Дважды два = икс? - Страница 8


К оглавлению

8

– Нормально, – пожимая плечами, отвечает ребёнок. Он мог бы вполне искренне добавить: как все, потому что не представляет, что можно учиться как-то иначе, что можно не понимать алгебраическую зависимость, не разбираться в химии, астрономии, истории. Но мы-то, взрослые, чувствуем, что учатся такие дети не как все, а как-то иначе. Им природа дала нечто такое, что отличает их ум от ума сверстников: талант, особые способности.

«Талант, способности. Без научного объяснения это пустые, бессодержательные понятия, отражающие, скорее, наше эмоциональное к ним отношение, чем суть дела, – мог бы заметить по поводу таких рассуждений учёный-психолог. – Только строгая экспериментальная проверка может объяснить, что за ними стоит».

Поэтому обратимся к данным педагогической психологии за ответом на вопрос, как учатся такие дети по существу. Каков психологический механизм постижения ими истины? Тогда, может быть, нам станет ясно, почему они предпочитают учиться, фигурально выражаясь, на диване, а не за партой.

Но, прежде всего, очевидно, имеет смысл заглянуть за кулисы учебной деятельности нормальных детей, составляющих в классе большинство и строго следующих в своём развитии канонам психологической концепции Пиаже.

– Дети, – говорит учитель. – Сегодня мы будем с вами изучать, что такое корень слова. Я сейчас назову несколько слов: сад, садовник, рассада. Сравнивая их между собой, мы видим: во всех словах есть общая часть, объединяющая слова по смыслу, – сад. Значит, такие слова можно назвать родственными. А вот слова «пирог», «начинка» – не родственные. Общая часть родственных слов называется корнем: он объединяет слова в одну семью. Так что же такое корень слова? Это общая часть слов, которые мы называем родственными. Теперь, когда вы узнали определение корня слова, будем учиться находить его в разных словах, упражняться на подчёркивании однокоренных слов.

Исходный момент обучения здесь – наличие образца, на который ребёнок должен ориентироваться. Детям дают такой образец действия, правило, формулу, и дети на их основе решают примеры, задачи, «отрабатывают» правила. Чем больше задач и примеров решит ребёнок, тем глубже постигнет смысл правила, установит границы его применения, отделит существенные признаки конкретных предметов от несущественных, тем легче приблизится к заданному образцу. Точно воспроизвести образец – значит усвоить материал. Но сделать это не так просто, особенно если образцом служит теоретическая зависимость. Поэтому вначале, конечно, дети делают ошибки. По мере овладения правилом, отработки навыков ошибок становится всё меньше и меньше. В конце концов, дети начинают действовать безошибочно. Правило усвоено, можно двигаться дальше.

Это традиционный, давно сложившийся психологический механизм усвоения знаний.

Можно предположить, что у способных детей он точно такой же. Всё дело в том, что если обычным детям нужно для усвоения правила, допустим, решить 100 задач, то способному ребёнку достаточно 10; он усваивает его просто значительно быстрее. Но вот исследование того, как учатся наиболее способные дети, даёт неожиданный результат: оказывается, всё-таки они учатся принципиально иначе.

Учитель задал школьникам задачу: сложить ряд последовательных чисел от 1 до 100 и получить сумму. Малыши уткнулись носами в тетрадки и, помогая себе язычком, медленно начали складывать длинный ряд цифр. А как же иначе? Именно складывать: один прибавить два, потом прибавить три и так далее. Да и многие из нас, взрослых, будут делать всё так же, ибо такое решение лежит, как говорится, на поверхности. Но вот один ребёнок почему-то не складывал, сидел, молча глядя на доску.

– Ты почему не решаешь? – грозно спросил учитель.

– Я уже решил, – ответил малыш и показал потрясённому учителю… выведенную им формулу, с помощью которой можно было получить результат, не производя последовательного сложения чисел.

Случай, о котором мы рассказали, – реальный, он взят из жизни знаменитого математика Гаусса. Будучи ещё школьником, он открыл, что сумма последовательных чисел от 1 до 100 может быть получена гораздо проще и быстрее:



Оказывается, примерно так же учатся все талантливые или просто очень способные дети. Они не решают 5, 10, или 100 задач. Более того, их вообще не интересует тот образец, который им услужливо подсовывается: правило, формула или определение, с которого начинается обучение. Для них формула – не начало, а конец обучения.

Они берут одну-единственную задачу, но решают её совсем иначе, чем другие дети. Если те решают задачу на сложение последовательного ряда чисел как чисто практическую, конкретную (важно получить результат), то способные дети решают другую задачу – познавательную. Их интересует не один какой-то конкретный результат, а общий принцип решения всех задач такого типа. Найдя принцип, они сами формулируют определение, делают вывод, выводят формулу. Но совершив такую познавательную деятельность, ориентируясь не на применение готового образца, а на поиск общего способа, лежащего в его основе, они в состоянии сразу безошибочно решить весь класс однотипных задач, в какие бы конкретные оболочки их ни прятали (сумма тракторов, лошадей или ракет для них прежде всего сумма). Поэтому тренировка им не нужна, долгое, постепенное приближение к истине им не нужно: они её обнаружили раз и навсегда.

Образуется огромный резерв времени, но не за счёт спрессовывания известных способов обучения, а за счёт применения принципиально другого способа!

8