Дважды два = икс? - Страница 29


К оглавлению

29

Затем нужно было тщательно раскрыть логику усвоения ребёнком теоретических понятий, показать, как это можно сделать на различных учебных предметах. Как строить его собственные действия, чтобы не тянуть ребёнка за волосы в обучение, а чтобы он сам шёл вперёд, лишь направляемый опытной рукой педагога. И подвести итог: определить, действительно ли формируется новый тип мышления (разумного, теоретического, творческого) и тем самым окончательно опровергнуть идею о независимости процессов обучения и развития. Или признать, что гипотеза была неверна и Пиаже всё-таки был прав…

Естественно, решение такой сложной проблемы требовало особой организации эксперимента. Если изучать уже существующие особенности ума можно в любых условиях, то исследование механизмов формирования научного мышления осуществимо лишь в специальном типе учебного учреждения – экспериментальном классе.

Войдём, наконец, в этот класс и мы, точнее не в класс, а в особую лабораторию психологической мысли. Познакомимся с теми средствами, какими она решает свои нелёгкие задачи.

Ось на чёрной доске

– Чем ты занимаешься на математике?

– Я складываю числа!

– А что такое число?

Секундное недоумение на лице малыша. Если бы он был постарше, то мог бы нам сказать: «Вы задаёте незаконный, точнее, провокационный вопрос. Я не знаю, что такое число, потому что понятием числа я не владею. Вы знаете, что я владею только житейским представлением о числе и поэтому могу только сказать, что число – это любой отдельно взятый предмет или сумма отдельно взятых предметов. Число выражает количество, то или другое количество».

– Итак, что такое число?

– Это… один, два, пять…

– Так чем же вы занимаетесь на математике?

– Мы учимся складывать числа.

Ну что ж, вероятно, вполне корректный для семилетнего возраста ответ. Но попробуем задать тот же вопрос «экспериментальному» ребёнку.

– Что такое число?

– Я не знаю…

– А чем вы занимаетесь на математике, разве вы не складываете числа?

– Нет. Мы учимся сравнивать предметы – настоящие и те, которые мы нарисовали.

– Какие предметы вы сравниваете, рисуете?

– Разные: яблоки, кружки, карандаши, кубики, кружочки…

– И всё? А какие задачи вы решаете?

– Мы сравниваем предметы и определяем, разные они или одинаковые.

– Что значит разные или одинаковые?

– Зависит от того, по какому признаку мы сравниваем. Например, одинаковые по длине, но разные по весу. Мы сравниваем по цвету, по длине, по объёму, по форме, по материалу… Приходите, посмотрите, – приглашает ребёнок.

Воспользуемся приглашением и устроимся на задней парте первого экспериментального класса. Впрочем, он, скорее, напоминает отдел «Сделай сам» магазина «Пионер». Чего только там нет на столах – линейки, проволоки, кубики, кружки, пластмасса, фанера, стекло. Чтобы не ошибиться, спрашиваем у учительницы: «Мы попали на урок труда?» Нет, всё правильно, это урок математики.

Даётся задание: подойти к столу и найти предметы, одинаковые по длине, но разные по материалу. Ребёнок подходит, перебирает предметы, думает. Остальные дети, вытянув шеи, наблюдают за ним. Наконец, он берёт две кружки, приставляет их друг к другу.

– Вот, это высота. Кружки одинаковые по высоте…

По классу как будто проходит вихрь, вверх взмывает лес рук.

– Петя ошибся?

– Да! Они разные не по материалу, а по цвету, цвет у кружек разный, а материал один.

– Петя, ты согласен с этим?

– Да, я ошибся.

– А может быть, ты и по длине ошибся? Как проверить?

– Нужно приложить, чтобы кончики совпали.

– Кто согласен?

На этот раз возражений у класса нет. Учитель показывает детям две разные кружки.

– Они одинаковые по объёму?

– Первая – тонкая и большая, а вторая – толстая и невысокая. Наверное, всё-таки одинаковые. Но надо проверить, налить воду.

Проверяют…

Оказывается, широкая кружка больше.

– Как видите, на глаз нельзя определить. Теперь всем задание – нарисовать предметы, разные по цвету, но одинаковые по ширине.

Головки склоняются над тетрадями. Непослушные пальцы старательно выводят предметы, разрисовывают их цветными карандашами.

– Что вы нарисовали?

– Я нарисовал два кофейника: красный и синий.

– А я две машины: жёлтую и зелёную.

– Я – две тетради…

Следует новое задание: сравнить по форме.

И вновь масса предложений: два кубика, две ложки, два кресла.

Ещё не все ориентируются в этом изобилии признаков, которыми, оказывается, обладают знакомые предметы. Ребёнок рассматривает кружку так, как будто видит её впервые: сколько в ней интересных, новых для него свойств. Ошибаются, путают, забывают задание, но думают! Один ошибётся, другой поправит.

– Как сделать так, чтобы в тетрадке или на доске было видно, что две кружки равны по объёму?

– Надо написать, что они равны по объёму.

Такое предложение остальных детей не устраивает.

– Писать долго. Надо договориться…

– Что значит договориться?

– Значок какой-нибудь поставить…

– Какой?

– Я предлагаю точку…

– А я палочку…

– Есть такой уже значок, люди давно придумали. Две одинаковые палочки. – Учительница нарисовала знак равенства.

– Какое предложение лучше?

– Две палочки лучше.

– Почему?

– Сразу видно… Два предмета одинаковые и две палочки одинаковые.

– А если один предмет больше другого?

– Тогда нужен другой значок.

И снова дети предлагают свои варианты. Знаки «больше» или «меньше», принятые в математике, удовлетворяют всех.

29