Затем нужно было тщательно раскрыть логику усвоения ребёнком теоретических понятий, показать, как это можно сделать на различных учебных предметах. Как строить его собственные действия, чтобы не тянуть ребёнка за волосы в обучение, а чтобы он сам шёл вперёд, лишь направляемый опытной рукой педагога. И подвести итог: определить, действительно ли формируется новый тип мышления (разумного, теоретического, творческого) и тем самым окончательно опровергнуть идею о независимости процессов обучения и развития. Или признать, что гипотеза была неверна и Пиаже всё-таки был прав…
Естественно, решение такой сложной проблемы требовало особой организации эксперимента. Если изучать уже существующие особенности ума можно в любых условиях, то исследование механизмов формирования научного мышления осуществимо лишь в специальном типе учебного учреждения – экспериментальном классе.
Войдём, наконец, в этот класс и мы, точнее не в класс, а в особую лабораторию психологической мысли. Познакомимся с теми средствами, какими она решает свои нелёгкие задачи.
– Чем ты занимаешься на математике?
– Я складываю числа!
– А что такое число?
Секундное недоумение на лице малыша. Если бы он был постарше, то мог бы нам сказать: «Вы задаёте незаконный, точнее, провокационный вопрос. Я не знаю, что такое число, потому что понятием числа я не владею. Вы знаете, что я владею только житейским представлением о числе и поэтому могу только сказать, что число – это любой отдельно взятый предмет или сумма отдельно взятых предметов. Число выражает количество, то или другое количество».
– Итак, что такое число?
– Это… один, два, пять…
– Так чем же вы занимаетесь на математике?
– Мы учимся складывать числа.
Ну что ж, вероятно, вполне корректный для семилетнего возраста ответ. Но попробуем задать тот же вопрос «экспериментальному» ребёнку.
– Что такое число?
– Я не знаю…
– А чем вы занимаетесь на математике, разве вы не складываете числа?
– Нет. Мы учимся сравнивать предметы – настоящие и те, которые мы нарисовали.
– Какие предметы вы сравниваете, рисуете?
– Разные: яблоки, кружки, карандаши, кубики, кружочки…
– И всё? А какие задачи вы решаете?
– Мы сравниваем предметы и определяем, разные они или одинаковые.
– Что значит разные или одинаковые?
– Зависит от того, по какому признаку мы сравниваем. Например, одинаковые по длине, но разные по весу. Мы сравниваем по цвету, по длине, по объёму, по форме, по материалу… Приходите, посмотрите, – приглашает ребёнок.
Воспользуемся приглашением и устроимся на задней парте первого экспериментального класса. Впрочем, он, скорее, напоминает отдел «Сделай сам» магазина «Пионер». Чего только там нет на столах – линейки, проволоки, кубики, кружки, пластмасса, фанера, стекло. Чтобы не ошибиться, спрашиваем у учительницы: «Мы попали на урок труда?» Нет, всё правильно, это урок математики.
Даётся задание: подойти к столу и найти предметы, одинаковые по длине, но разные по материалу. Ребёнок подходит, перебирает предметы, думает. Остальные дети, вытянув шеи, наблюдают за ним. Наконец, он берёт две кружки, приставляет их друг к другу.
– Вот, это высота. Кружки одинаковые по высоте…
По классу как будто проходит вихрь, вверх взмывает лес рук.
– Петя ошибся?
– Да! Они разные не по материалу, а по цвету, цвет у кружек разный, а материал один.
– Петя, ты согласен с этим?
– Да, я ошибся.
– А может быть, ты и по длине ошибся? Как проверить?
– Нужно приложить, чтобы кончики совпали.
– Кто согласен?
На этот раз возражений у класса нет. Учитель показывает детям две разные кружки.
– Они одинаковые по объёму?
– Первая – тонкая и большая, а вторая – толстая и невысокая. Наверное, всё-таки одинаковые. Но надо проверить, налить воду.
Проверяют…
Оказывается, широкая кружка больше.
– Как видите, на глаз нельзя определить. Теперь всем задание – нарисовать предметы, разные по цвету, но одинаковые по ширине.
Головки склоняются над тетрадями. Непослушные пальцы старательно выводят предметы, разрисовывают их цветными карандашами.
– Что вы нарисовали?
– Я нарисовал два кофейника: красный и синий.
– А я две машины: жёлтую и зелёную.
– Я – две тетради…
Следует новое задание: сравнить по форме.
И вновь масса предложений: два кубика, две ложки, два кресла.
Ещё не все ориентируются в этом изобилии признаков, которыми, оказывается, обладают знакомые предметы. Ребёнок рассматривает кружку так, как будто видит её впервые: сколько в ней интересных, новых для него свойств. Ошибаются, путают, забывают задание, но думают! Один ошибётся, другой поправит.
– Как сделать так, чтобы в тетрадке или на доске было видно, что две кружки равны по объёму?
– Надо написать, что они равны по объёму.
Такое предложение остальных детей не устраивает.
– Писать долго. Надо договориться…
– Что значит договориться?
– Значок какой-нибудь поставить…
– Какой?
– Я предлагаю точку…
– А я палочку…
– Есть такой уже значок, люди давно придумали. Две одинаковые палочки. – Учительница нарисовала знак равенства.
– Какое предложение лучше?
– Две палочки лучше.
– Почему?
– Сразу видно… Два предмета одинаковые и две палочки одинаковые.
– А если один предмет больше другого?
– Тогда нужен другой значок.
И снова дети предлагают свои варианты. Знаки «больше» или «меньше», принятые в математике, удовлетворяют всех.